МУНИЦИПАЛЬНОЕ БЮДЖЕТНОЕ ОБЩЕОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ «МАКЕЕВСКАЯ ОСНОВНАЯ ШКОЛА» с. Макеево

Рабочая программа внеурочной деятельности по общеинтеллектуальному направлению «Инфознайка» 4 класс

Составитель: Общева Ольга Николаевна, учитель информатики первой категории

1. Пояснительная записка

Данная рабочая программа разработана в соответствии с требованиями федерального государственного образовательного стандарта начального общего образования (далее – Стандарт), основной образовательной программой начального общего образования (далее – ООП), а также на основе авторской программы А. В. Горячева и ориентирована на работу по учебнику: Горячев А. В., Горина К. И., Суворова Н. И. Информатика. 4 класс. («Информатика в играх и задачах»): учебник: в 2 ч. М.: Баласс: Школьный дом.

Данный курс является пропедевтическим и рассчитан на изучение учащимися 4 класса в течение 34 учебных часов из расчета 1 час в неделю.

Курс предназначен для развития логического, алгоритмического и системного мышления, создания предпосылок успешного освоения учащимися инвариантных фундаментальных знаний и умений в областях, связанных с информатикой, которые вследствие непрерывного обновления и изменения в аппаратных и программных средствах выходят на первое место в формировании научного информационно-технологического потенциала общества.

Главная *цель* данного курса информатики и ИКТ: развивая логическое, алгоритмическое и системное мышление, создавать предпосылку успешного освоения инвариантных фундаментальных знаний и умений в областях, связанных с информатикой, которые вследствие непрерывного обновления и изменения аппаратных и программных средств выходят на первое место в формировании научного информационно-технологического потенциала общества.

Задачи курса:

- 1) развитие у школьников навыков решения задач с применением таких подходов к решению, которые наиболее типичны и распространены в областях деятельности, традиционно относящихся к информатике:
- применение формальной логики при решении задач построение выводов путем применения к известным утверждениям логических операций «если то», «и», «или», «не» и их комбинаций «если ... и ..., то ...»);
- алгоритмический подход к решению задач умение планирования последовательности действий для достижения какой-либо цели, а также решения широкого класса задач, для которых ответом является не число или утверждение, а описание последовательности действий;
- системный подход рассмотрение сложных объектов и явлений в виде набора более простых составных частей, каждая из которых выполняет свою роль для функционирования объекта в целом; рассмотрение влияния изменения в одной составной части на поведение всей системы;
- объектно-ориентированный подход акцентирование объектов, а не действий, умение объединять отдельные предметы в группу с общим названием, выделять общие признаки предметов этой группы и действия, выполняемые над этими предметами; умение описывать предмет по принципу «из чего состоит и что делает (что можно с ним делать»);
- 2) расширение кругозора в областях знаний, тесно связанных с информатикой: знакомство с графами, комбинаторными задачами, логическими играми с выигрышной стратегией («начинают и выигрывают») и некоторыми другими;
- 3) создание у учеников навыков решения логических задач и ознакомление с общими приемами решения задач «как решать задачу, которую раньше не решали» с ориентацией на проблемы формализации и создания моделей (поиск закономерностей, рассуждения по аналогии, по индукции, правдоподобные догадки, развитие творческого воображения и др.).

Программа разработана с учетом особенностей первой ступени общего образования, а также возрастных и психологических особенностей младшего школьника. При разработке программы учитывались разброс в темпах и направлениях развития детей, индивидуальные различия в их познавательной деятельности, восприятии, внимании, памяти, мышлении, моторике и т. п.

Образование в начальной школе является базой, фундаментом последующего образования, поэтому важнейшая цель начального образования — сформировать у учащихся комплекс универсальных учебных действий (далее — УУД), обеспечивающих способность к самостоятельной учебной деятельности, то есть умение учиться. В соответствии со Стандартом целью реализации ООП является

обеспечение планируемых образовательных результатов трех групп: личностных, метапредметных и предметных. Программа по информатике нацелена на достижение результатов всех этих трех групп. При этом в силу специфики учебного предмета особое место в программе занимает достижение результатов, касающихся работы с информацией. Важнейшей целью-ориентиром изучения информатики в школе является воспитание и развитие качеств личности, отвечающих требованиям общества, частности приобретение учащимися информационного В информационной коммуникационной компетентности (далее – ИКТ-компетентности). Многие составляющие ИКТкомпетентности входят и в структуру комплекса универсальных учебных действий. Таким образом, часть предметных результатов образования в курсе информатики входит в структуру метапредметных, то есть становится непосредственной целью обучения и отражается в содержании изучаемого материала. При этом в содержании курса информатики для начальной школы значительный объем предметной части имеет пропедевтический характер. В результате удельный вес метапредметной части содержания курса начальной школы оказывается довольно большим (гораздо больше, чем у любого другого курса в начальной школе). Поэтому курс информатики в начальной школе имеет интегративный, межпредметный характер. Он призван стать стержнем всего начального образования в части формирования ИКТ-компетентности и универсальных учебных действий.

2. Общая характеристика курса

В курсе условно можно выделить следующие содержательные линии:

- основные информационные объекты и структуры (цепочка, мешок, дерево, таблица);
- основные информационные действия (в том числе логические) и процессы (поиск объекта по описанию, построение объекта по описанию, группировка и упорядочение объектов, выполнение инструкции, в том числе программы или алгоритма и пр.);
- основные информационные методы (метод перебора полного или систематического, метод проб и ошибок, метод разбиения задачи на подзадачи и пр.).

В соответствии с ООП в основе программы курса информатики лежит системно-деятельностный подход, который заключается в вовлечении обучающегося в учебную деятельность, формировании компетентности учащегося в рамках курса. Он реализуется не только за счет подбора содержания образования, но и за счет определения оптимальных видов деятельности учащихся. Ориентация курса на системно-деятельностный подход позволяет учесть индивидуальные особенности учащихся, построить индивидуальные образовательные траектории для каждого обучающегося.

Основной целью изучения информатики в начальной школе является формирование у учащихся основ ИКТ-компетентности, многие компоненты которой входят в структуру УУД. Это и задает основные ценностные ориентиры содержания данного курса. С точки зрения достижения метапредметных результатов обучения, а также продолжения образования на более высоких ступенях (в том числе обучения информатике в среднем и старшем звене) наиболее ценными являются следующие компетенции, отраженные в содержании курса:

- основы логической и алгоритмической компетентности, в частности овладение основами логического и алгоритмического мышления, умением действовать в соответствии с алгоритмом и строить простейшие алгоритмы;
- основы информационной грамотности, в частности овладение способами и приемами поиска, получения, представления информации, в том числе информации, данной в различных видах: текст, таблица, диаграмма, цепочка, совокупность;
- *основы ИКТ-квалификации*, в частности овладение основами применения компьютеров (и других средств ИКТ) для решения информационных задач;
- основы коммуникационной компетентности. В рамках данного учебного предмета наиболее активно формируются стороны коммуникационной компетентности, связанные с приемом и передачей информации. Сюда же относятся аспекты языковой компетентности, которые связаны с овладением системой информационных понятий, использованием языка для приема и передачи информации.

3. Место курса в учебном плане

Изучение программы проходит в 1-4 общеобразовательных классах в рамках внеурочной деятельности (общеинтеллектуальное направление), в основе реализации Федерального государственного образовательного стандарта начального общего образования (с 01 сентября 2011 года).

Рабочая программа внеурочной деятельности предполагает следующие сроки изучения материала:

- ✓ 1 класс-33 часа в год, 1 час в неделю;
- ✓ 2 класс-35 часов в год, 1 час в неделю;
- √ 3 класс-35 часов в год, 1 час в неделю;
- √ 4 класс-35 часов в год, 1 час в неделю.

4. Планируемые результаты освоения содержания курса

В итоге работы по программе учащимися должны быть достигнуты следующие результаты освоения основной образовательной программы начального общего образования:

личностные:

- 1) овладение начальными навыками адаптации в динамично изменяющемся и развивающемся мире;
 - 2) развитие мотивов учебной деятельности;
- 3) развитие самостоятельности и личной ответственности за свои поступки в информационной деятельности на основе представлений о нравственных нормах, социальной справедливости и свободе;
- 4) развитие навыков сотрудничества со взрослыми и сверстниками в разных социальных ситуациях, умения не создавать конфликты и находить решение в спорных ситуациях.

метапредметные:

- 5) освоение способов решения проблем творческого и поискового характера;
- 6) формирование умения планировать, контролировать и оценивать учебные действия в соответствии с поставленной задачей и условиями ее реализации;
- 7) использование знаково-символических средств представления информации для создания моделей изучаемых объектов и процессов, схем решения учебных и практических задач;
- 8) активное использование речевых средств и средств информационных и коммуникационных технологий для решения коммуникативных и познавательных задач;
- 9) использование различных способов поиска (в справочных источниках и открытом учебноинформационном пространстве Интернета), сбора, обработки, анализа, организации, передачи и интерпретации информации в соответствии с коммуникативными и познавательными задачами и технологиями учебного предмета, в том числе умение вводить текст с помощью клавиатуры, фиксировать (записывать) в цифровой форме измеряемые величины и анализировать изображения, звуки, готовить свое выступление и выступать с аудио-, видео- и графическим сопровождением;
- 10) осознанное построение речевого высказывания в соответствии с задачами коммуникации и составление текстов в устной и письменной форме;
- 11) овладение логическими действиями сравнения, анализа, синтеза, обобщения, классификации по родовидовым признакам, установления аналогий и причинно-следственных связей, построения рассуждений, отнесения к известным понятиям;
- 12) готовность слушать собеседника и вести диалог, признавать возможность существования различных точек зрения и права каждого иметь свою; излагать свое мнение и аргументировать свою точку зрения и оценку событий;
- 13) готовность конструктивно разрешать конфликты посредством учета интересов сторон и сотрудничества;
- 14) овладение начальными сведениями о сущности и особенностях информационных объектов, процессов и явлений действительности;
- 15) овладение базовыми предметными и межпредметными понятиями, отражающими существенные связи и отношения между объектами и процессами.

5. Содержание учебного курса 4-й класс (35 ч)

Алгоритм (9 ч)

Вложенные алгоритмы. Алгоритмы с параметрами. Циклы: повторение, указанное число раз, до выполнения заданного условия, для перечисленных параметров.

Объекты (8 ч)

Составные объекты. Отношение «состоит из». Схема («дерево») состава. Адреса объектов. Адреса компонент составных объектов. Связь между составом сложного объекта и адресами его компонент. Относительные адреса в составных объектах.

Логические рассуждения (10 ч)

Связь операций над множествами и логических операций. Пути в графах, удовлетворяющие заданным критериям. Правила вывода «если – то». Цепочки правил вывода. Простейшие «и-или» графы.

Модели в информатике (8 ч)

Приемы фантазирования («наоборот», «необычные значения признаков», «необычный состав объекта»). Связь изменения объектов и их функционального назначения. Применение изучаемых приемов фантазирования к материалам предыдущих разделов (к алгоритмам, объектам и др.)

Тема	Число	Основные виды учебной			
	часов	деятельности учащихся			
Алгоритмы					
Вложенные алгоритмы. Алгоритмы с	9	Составлять и записывать вложенные			
параметрами. Циклы: повторение		алгоритмы. Выполнять, составлять			
указанное число раз; до выполнения		алгоритмы с ветвлениями и циклами			
заданного условия; для перечисленных		и записывать их в виде схем и в			
параметров.		построчной записи с отступами.			
		Выполнять и составлять алгоритмы с			
		параметрами.			
Группы (классы) объ	ектов			
Составные объекты. Отношение	8	Определять составные части			
«состоит из». Схема (дерево) состава.		предметов, а также состав этих			
Адреса объектов. Адреса компонентов		составных частей, составлять схему			
составных объектов. Связь между		состава (в том числе			
составом сложного объекта и адресами		многоуровневую).			
его компонентов. Относительные адреса		<u>Описывать</u> местонахождение			
в составных объектах.		предмета, перечисляя объекты, в			
		состав которых он входит (по			
		аналогии с почтовым адресом).			
		Записывать признаки и действия			
		всего предмета или существа и его			
		частей на схеме состава.			
		Заполнять таблицу признаков для			
		предметов из одного класса (в каждой			
		ячейке таблицы записывается			
		значение одного из нескольких			
		признаков у одного из нескольких			
		предметов).			

Логичес	кие рассужд	Эения
Связь операций над совокупностями	10	Изображать на схеме совокупности
(множествами)и логических операций.		(множества) с разным взаимным
Пути в графах, удовлетворяющие		расположением: вложенность,
заданным критериям. Правила вывода		объединение, пересечение.
«если, то». Цепочки правил		Определять истинность
вывода. Простейшие графы «и – или».		высказываний со словами «НЕ», «И»,
		«ИЛИ».
		Строить графы по словесному
		описанию отношений между
		предметами или существами.
		<u>Строить</u> и <u>описывать</u> пути в графах.
		Выделять часть рёбер графа по
		высказыванию со словами «НЕ», «И»,
		«ИЛИ».
		Записывать выводы в виде правил
		«если, то»; по заданной
		ситуации составлять короткие
		цепочки правил «если, то»;
		составлять схемы рассуждений из
		правил «если, то» и делать с их
		помощью выводы.
Применение модел		
Приёмы фантазирования (приём	8	<u>Придумывать</u> и <u>описывать</u> предметы
«наоборот», «необычные значения		с необычным составом и
признаков», «необычный состав		возможностями. Находить действия с
объекта»). Связь изменения объектов и		одинаковыми названиями у разных
их функционального назначения.		
Применение изучаемых приёмов		объекты с необычными признаками.
фантазирования к материалам разделов		Описывать с помощью алгоритма
1-3 (к алгоритмам, объектам и др.).		действие, обратное заданному.
		Соотносить действия предметов и
		существ с изменением значений их
		признаков.

6. Тематическое планирование

№	Название темы	Количество часов	Проведено фактически
1	Алгоритмы	9	
2	Группы (классы) объектов	8	
3	Логические рассуждения	10	
4	Применение моделей (схем) для решения задач	8	
	Итого:	35	

7. Материально-техническое и учебно-методическое обеспечение

Учебно-методический комплект.

- 1. *Горячев, А. В.* Информатика в играх и задачах. 4 класс («Информатика в играх и задачах»): учебник: в 2 ч. / А. В. Горячев, К. И. Горина, Н. И. Суворова. М.: Баласс: Школьный дом.
- 2. *Информатика*. 4 класс: методические рекомендации для учителя / А. В. Горячев, К. И. Горина, Н. И. Суворова. М.: Баласс.
 - 3. Информатика. 4 класс: комплект наглядных пособий: в 2 ч. / сост. Н. И. Суворова. М.: Баласс.

Технические средства обучения.

- 1. Компьютер.
- 2. Проектор.
- 3. Принтер.
- 4. Устройства вывода звуковой информации (колонки) для озвучивания всего класса.
- 5. Сканер.

8. Требования к уровню подготовки обучающихся (предметные)

В результате обучения учащиеся будут уметь:

- составлять и выполнять алгоритмы с ветвлениями и циклами;
- выполнять алгоритмы с параметрами;
- записывать пошаговые результаты выполнения алгоритмов;
- находить и исправлять ошибки в алгоритмах;
- сравнивать объекты одной группы (класса) и описывать в табличном виде их общие свойства и отличительные признаки;
- давать общие и единичные имена объектам;
- заполнять схему состава объекта, записывать адреса составных частей;
- описывать признаки и действия составных частей объекта;
- определять принадлежность объектов по заданным множествам, подмножествам и пересекающим множествам; определять истинность высказывания со словами «не», «и», «или»;
- изображать отношения между объектами с помощью графа, выделять подграфы, заданные высказываниями со словами «не», «и», «или», описывать путь в графе;
- описывать связи между высказываниями с помощью правил «если то», делать выводы с помощью простейших схем рассуждений;
- описывать в табличном виде общие составные части, общие действия и отличительные признаки группы (класса) объектов;
- описывать на схеме состава структуру объекта;
- придумывать и описывать объекты с необычными составными частями, действиями, признаками;
- составлять алгоритмы обратных действий.

Календарно-тематическое планирование курса «Инфознайка»

4 класс

(35 часов в год, по 1 часу в неделю)

Nº	Тема урока	Плановые сроки изучения материала	Фактические сроки изучения материала
	1. Алгоритмы (9ч) 1 часть		
1	Ветвление в построчной записи алгоритма		
2	Ветвление		
3	Цикл в построчной записи алгоритма		
4	Цикл в построчной записи алгоритма		
5	Алгоритм с параметрами		
6	Алгоритм с параметрами		
7	Пошаговая запись результатов выполнения алгоритма		
8	Пошаговая запись результатов выполнения алгоритма		
9	Повторение темы «Алгоритмы»		
	2. Группы (классы) объектов (8ч)		
10	Общие свойства и отличительные признаки группы объектов		
11	Схема состава объекта. Адрес составной части.		
12	Схема состава объекта. Адрес составной части.		
13	Массив объектов на схеме состава		
14	Массив объектов на схеме состава		
15	Признаки и действия объекта и его составных частей		
16	Признаки и действия объекта и его составных частей		
17	Повторение по теме «Группы объектов»		
	3. Логические рассуждения (10ч) 2 часть		
18	Множество. Подмножество. Пересечение множеств.		
19	Истинность высказываний со словами «не», «и», «или»		
20	Истинность высказываний со словами «не», «и», «или»		
21	Описание отношений между объектами с помощью графов		
22	Описание отношений между объектами с помощью графов		
23	Пути в графах		
24	Высказывания со словами «не», «и», «или» и выделение подграфов		
25	Правило «если – то»		

26	Схема рассуждений	
27	Повторение по теме «Логические	
	рассуждения»	
4.	Применение моделей (схем) для решения	
	задач (8ч)	
28	Составные части объектов. Объекты с	
	необычным составом.	
29	Действия объектов. Объекты с необычным	
	составом и действиями.	
30	Признаки объектов. Объекты с необычными	
	признаками и действиями.	
31	Объекты, выполняющие обратные действия.	
	Алгоритм обратного действия.	
32	Повторение темы «Применение моделей для	
	решения задач»	
33	Проект «Фантастический лес»	
34	Повторение основных понятий курса.	
35	Подведение итогов года.	

Согласовано

протокол заседания ШМО начальной школы от «3/» <u>иая</u> 2018 г. № <u>6</u> Руководитель ____ Л.А. Родина

Согласовано